Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 120
Filter
1.
Hum Vaccin Immunother ; 19(1): 2212568, 2023 12 31.
Article in English | MEDLINE | ID: covidwho-20242458

ABSTRACT

The Omicron variant of SARS-CoV-2 was detected in October 2021 and exhibited high transmissibility, immune evasion, and reduced severity when compared to the earlier variants. The lesser vaccine effectiveness against Omicron and its reduced severity created vaccination hesitancy among the public. This review compiled data reporting the relative prevalence of Omicron as compared to the early variants to give an insight into the existing variants, which may shape the decisions regarding the targets of the newly developed vaccines. Complied data revealed more than 90% prevalence within the infected cohorts in some countries. The BA.1 subvariant predominated over the BA.2 during the early stages of the Omicron wave. Moreover, BA.4/BA.5 subvariants were detected in South Africa, USA and Italy between October 2021 and April 2022. It is therefore important to develop vaccines that protect against Omicron as well as the early variants, which are known to cause more severe complications.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Prevalence , SARS-CoV-2 , Italy/epidemiology
2.
Front Immunol ; 14: 1130539, 2023.
Article in English | MEDLINE | ID: covidwho-20241121

ABSTRACT

The highly transmissible Omicron (B.1.1.529) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first detected in late 2021. Initial Omicron waves were primarily made up of sub-lineages BA.1 and/or BA.2, BA.4, and BA.5 subsequently became dominant in mid-2022, and several descendants of these sub-lineages have since emerged. Omicron infections have generally caused less severe disease on average than those caused by earlier variants of concern in healthy adult populations, at least, in part, due to increased population immunity. Nevertheless, healthcare systems in many countries, particularly those with low population immunity, have been overwhelmed by unprecedented surges in disease prevalence during Omicron waves. Pediatric admissions were also higher during Omicron waves compared with waves of previous variants of concern. All Omicron sub-lineages exhibit partial escape from wild-type (Wuhan-Hu 1) spike-based vaccine-elicited neutralizing antibodies, with sub-lineages with more enhanced immuno-evasive properties emerging over time. Evaluating vaccine effectiveness (VE) against Omicron sub-lineages has become challenging against a complex background of varying vaccine coverage, vaccine platforms, prior infection rates, and hybrid immunity. Original messenger RNA vaccine booster doses substantially improved VE against BA.1 or BA.2 symptomatic disease. However, protection against symptomatic disease waned, with reductions detected from 2 months after booster administration. While original vaccine-elicited CD8+ and CD4+ T-cell responses cross-recognize Omicron sub-lineages, thereby retaining protection against severe outcomes, variant-adapted vaccines are required to expand the breadth of B-cell responses and improve durability of protection. Variant-adapted vaccines were rolled out in late 2022 to increase overall protection against symptomatic and severe infections caused by Omicron sub-lineages and antigenically aligned variants with enhanced immune escape mechanisms.


Subject(s)
COVID-19 , Vaccines , Adult , Humans , Child , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2/genetics , Vaccine Efficacy , Cost of Illness
3.
J Cancer Res Clin Oncol ; 2023 Jun 10.
Article in English | MEDLINE | ID: covidwho-20240895

ABSTRACT

PURPOSE: The SARS-CoV-2 Omicron variant of concern (VOC) and subvariants like BQ.1.1 demonstrate immune evasive potential. Little is known about the efficacy of booster vaccinations regarding this VOC and subvariants in cancer patients. This study is among the first to provide data on neutralizing antibodies (nAb) against BQ.1.1. METHODS: Cancer patients at our center were prospectively enrolled between 01/2021 and 02/2022. Medical data and blood samples were collected at enrollment and before and after every SARS-CoV-2 vaccination, at 3 and 6 months. RESULTS: We analyzed 408 samples from 148 patients (41% female), mainly with solid tumors (85%) on active therapy (92%; 80% chemotherapy). SARS-CoV-2 IgG and nAb titers decreased over time, however, significantly increased following third vaccination (p < 0.0001). NAb (ND50) against Omicron BA.1 was minimal prior and increased significantly after the third vaccination (p < 0.0001). ND50 titers against BQ.1.1 after the third vaccination were significantly lower than against BA.1 and BA.4/5 (p < 0.0001) and undetectable in half of the patients (48%). Factors associated with impaired immune response were hematologic malignancies, B cell depleting therapy and higher age. Choice of vaccine, sex and treatment with chemo-/immunotherapy did not influence antibody response. Patients with breakthrough infections had significantly lower nAb titers after both 6 months (p < 0.001) and the third vaccination (p = 0.018). CONCLUSION: We present the first data on nAb against BQ.1.1 following the third vaccination in cancer patients. Our results highlight the threat that new emerging SARS-CoV-2 variants pose to cancer patients and support efforts to apply repeated vaccines. Since a considerable number of patients did not display an adequate immune response, continuing to exhibit caution remains reasonable.

4.
J Med Virol ; 95(6): e28831, 2023 06.
Article in English | MEDLINE | ID: covidwho-20239959

ABSTRACT

Despite the higher transmissibility of Omicron Variant of Concern (VOC), several reports have suggested lower risk for hospitalization and severe outcomes compared to previous variants of SARS-CoV-2. This study, enrolling all COVID-19 adults admitted to a reference hospital who underwent both the S-gene-target-failure test and VOC identification by Sanger sequencing, aimed to describe the evolving prevalence of Delta and Omicron variants and to compare the main in-hospital outcomes of severity, during a trimester (December 2021 to March 2022) of VOCs' cocirculation. Factors associated with clinical progression to noninvasive ventilation (NIV)/mechanical ventilation (MV)/death within 10 days and to MV/admission to intensive care unit (ICU)/death within 28 days, were investigated through multivariable logistic regressions. Overall, VOCs were: Delta n = 130/428, Omicron n = 298/428 (sublineages BA.1 n = 275 and BA.2 n = 23). Until mid-February, Delta predominance shifted to BA.1, which was gradually displaced by BA.2 until mid-March. Participants with Omicron VOC were more likely to be older, fully vaccinated, with multiple comorbidities and to have a shorter time from symptoms' onset, and less likely to have systemic symptoms and respiratory complications. Although the need of NIV within 10 days and MV within 28 days from hospitalization and the admission to ICU were less frequent for patients with Omicron compared to those with Delta infections, mortality was similar between the two VOCs. In the adjusted analysis, multiple comorbidities and a longer time from symptoms' onset predicted 10-day clinical progression, while complete vaccination halved the risk. Multimorbidity was the only risk factor associated with 28-day clinical progression. In our population, in the first trimester of 2022, Omicron rapidly displaced Delta in COVID-19 hospitalized adults. Clinical profile and presentation differed between the two VOCs and, although Omicron infections showed a less severe clinical picture, no substantial differences for clinical progression were found. This finding suggests that any hospitalization, especially in more vulnerable individuals, may be at risk for severe progression, which is more related to the underlying frailty of patients than to the intrinsic severity of the viral variant.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Hospitals , Disease Progression
5.
Braz J Microbiol ; 2023 Jun 03.
Article in English | MEDLINE | ID: covidwho-20236042

ABSTRACT

Since the beginning of the SARS-CoV-2 pandemic, studies on the variants and sublineages stand out, mainly in the cases of reinfection in a short period. In this study, we describe a case of infection by BA.1.1 sublineage in an individual from Southern Brazil. The same patient acquired reinfection with sublineage BA.2 within 16 days after the first detection. The viral extraction and RT-qPCR were performed on the samples LMM72045 (collected in May 2022) and LMM72044 (collected in June 2022). After the confirmation of SARS-CoV-2 infection, we conducted the sequencing and viral genome analysis. This case of reinfection affected a 52-year-old male patient, without comorbidities, with three doses of vaccines against COVID-19, showing symptoms on May 19. These symptoms lasted for approximately six days. The patient returned to work activities on May 30. However, on June 4, the patient felt a new round of clinical signs that lasted for approximately seven days. Analysis of the viral genomes recovered from patients' clinical samples revealed that the two COVID-19 episodes were related to two divergent VOC Omicron sublineages, namely, BA.1.1 for the first round of symptoms and BA.2 for the second infection. Based on our findings, we can say that the present case of reinfection is the shortest described so far.

6.
Heliyon ; 9(6): e16750, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-20230707

ABSTRACT

The rapid spread and dominance of the Omicron SARS-CoV-2 lineages have posed severe health challenges worldwide. While extensive research on the role of the Receptor Binding Domain (RBD) in promoting viral infectivity and vaccine sensitivity has been well documented, the functional significance of the 681PRRAR/SV687 polybasic motif of the viral spike is less clear. In this work, we monitored the infectivity levels and neutralization potential of the wild-type human coronavirus 2019 (hCoV-19), Delta, and Omicron SARS-CoV-2 pseudoviruses against sera samples drawn four months post administration of a third dose of the BNT162b2 mRNA vaccine. Our findings show that in comparison to hCoV-19 and Delta SARS-CoV-2, Omicron lineages BA.1 and BA.2 exhibit enhanced infectivity and a sharp decline in their sensitivity to vaccine-induced neutralizing antibodies. Interestingly, P681 mutations within the viral spike do not play a role in the neutralization potential or infectivity of SARS Cov-2 pseudoviruses carrying mutations in this position. The P681 residue however, dictates the ability of the spike protein to promote fusion and syncytia formation between infected cells. While spike from hCoV-19 (P681) and Omicron (H681) promote only modest cell fusion and formation of syncytia between cells that express the spike-protein, Delta spike (R681) displays enhanced fusogenic activity and promotes syncytia formation. Additional analysis shows that a single P681R mutation within the hCoV-19 spike, or H681R within the Omicron spike, restores fusion potential to similar levels observed for the Delta R681 spike. Conversely, R681P point mutation within the spike of Delta pseudovirus abolishes efficient fusion and syncytia formation. Our investigation also demonstrates that spike proteins from hCoV-19 and Delta SARS-CoV-2 are efficiently incorporated into viral particles relative to the spike of Omicron lineages. We conclude that the third dose of the Pfizer-BNT162b2 provides appreciable protection against the newly emerged Omicron sub-lineages. However, the neutralization sensitivity of these new variants is diminished relative to that of the hCoV-19 or Delta SARS-CoV-2. We further show that the P681 residue within spike dictates cell fusion and syncytia formation with no effects on the infectivity of the specific viral variant and on its sensitivity to vaccine-mediated neutralization.

7.
J Infect Chemother ; 29(8): 820-824, 2023 Aug.
Article in English | MEDLINE | ID: covidwho-2317556

ABSTRACT

We report a case of prolonged shedding of the infective SARS-CoV-2 omicron variant BA.1.1.2 in a 79-year-old male patient with diffuse large B-cell lymphoma, after receiving chemotherapy with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone (R-CHOP). The patient was admitted to our hospital in late March 2022 for the sixth course of R-CHOP chemotherapy. Initially, the patient tested negative for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using an in-hospital loop-mediated amplification assay with a nasopharyngeal swab, both on the day of admission and three days later. However, the patient developed fever and was diagnosed with coronavirus disease (COVID-19) six days after admission and was suspected to have contracted the infection in the ward. Viral shedding continued for more than three months, with confirmed viral infectivity. As compared to the original Wuhan-Hu-1/2019 strain, amino acid substitutions including S36 N in non-structural protein (NSP)2, S148P, S1265del and L1266I in NSP3, G105D in NSP4, G496S, A831V, or V987F in spike protein, and I45T in open-reading frame (ORF)9b were randomly detected in isolated viruses. Although the patient had received two doses of the BNT162b2 vaccine approximately six months earlier and the third dose on day 127 after the infection, both serum anti-spike and anti-nuclear protein IgG and IgM tests were negative at day 92, 114, and 149 after the infection. The patient finally cleared the virus after the third course of remdesivir and did not have further recurrence.


Subject(s)
COVID-19 , Lymphoma, Large B-Cell, Diffuse , Male , Humans , Aged , SARS-CoV-2 , BNT162 Vaccine , COVID-19 Drug Treatment , Lymphoma, Large B-Cell, Diffuse/drug therapy
8.
J Infect Dis ; 2022 Jul 01.
Article in English | MEDLINE | ID: covidwho-2319602

ABSTRACT

BACKGROUND: The epidemiological advantage of Omicron variant is evidenced by its rapid spread and the ability to outcompete prior variants. Among Omicron sub-lineages, early outbreaks were dominated by BA.1 while BA.2 has gained dominance since February 2022. The relative pathogenicity and transmissibility of BA.1 and BA.2 have not been fully defined. METHODS: We compared viral loads and clinical signs in Syrian hamsters after infection with BA.1, BA.2, or D614G variant. A competitive transmission model and next generation sequencing were used to compare the relative transmission potential of BA.1 and BA.2. RESULTS: BA.1 and BA.2 caused no apparent clinical signs while D614G caused more than 10% weight loss. Higher viral loads were detected from the nasal washes, nasal turbinate and lungs of BA.1 than BA.2 inoculated hamsters. No aerosol transmission was observed for BA.1 or BA.2 under the experimental condition that D614G transmitted efficiently. BA.1 and BA.2 were able to transmit among hamsters via direct contact; however, BA.1 transmitted more efficiently than BA.2 under the competitive transmission model. No recombination was detected from direct contacts exposed simultaneously to BA.1 and BA.2. CONCLUSIONS: Omicron BA.1 and BA.2 demonstrated attenuated pathogenicity and reduced transmission potential in hamsters when compared to early SARS-CoV-2 strains.

9.
Chinese Journal of Disease Control and Prevention ; 27(2):164-168, 2023.
Article in Chinese | Scopus | ID: covidwho-2306549

ABSTRACT

Objective To estimate the protection probability against SARS-CoV-2 variant Omicron strains BA.1, BA.2 and BA.5 infection, symptomatic infection and severe disease outcomes in asymptomatic individuals infected with SARS-CoV-2 prototype strain previously. Methods Our previous study had shown that the dynamic change of neutralizing antibodies in asymptomatic individuals infected with the SARS-CoV-2 prototype strain. Based on our previous study, a peer–reviewed predictive model on the basis of logistic model was used to estimate the protection probability of asymptomatic individuals against Omicron strains BA.1, BA.2 and BA.5. We estimate the protection probability against infection, symptomatic infection and severe disease outcomes on 28, 51 and 261 days after confirmation. Results The protection probability against reinfection of Omicron variant strains BA.1, BA.2, and BA.5 on 28 days after confirmation were 30% (95% CI: 16%–52%) , 23% (95% CI: 15%–36%) and 8% (95% CI: 4%–16%) respectively, while decreased to 9% (95% CI: 3%–21%) , 6% (95% CI: 3%–12%) and 2% (95% CI: 1%–4%) on 261 days after confirmation. The protection probability against symptomatic infection of Omicron strains BA.1, BA.2, and BA.5 were 51% (95% CI: 28%–80%) , 42% (95% CI: 26%–67%) and 16% (95% CI: 7% – 40%) respectively on 28 days after confirmation, while decreased to 16% (95% CI: 7%–35%) , 12% (95% CI: 7% – 22%) and 3% (95% CI: 1% – 8%) on 261 days after confirmation. The protection probability against severe disease of Omicron strains BA.1, BA.2, and BA.5 were 91% (95% CI: 72%–98%) , 88% (95% CI: 70%–97%) and 66% (95% CI: 35%–90%) respectively on 28 days after confirmation, while decreased to 60% (95% CI: 35%–86%) , 51% (95% CI: 32%–75%) and 22% (95% CI: 10%–50%) on 261 days after confirmation. Conclusions Neutralizing antibodies induced in asymptomatic individuals infected with prototype strain could provide higher protection against Omicron strain BA.5 than Omicron strains BA.1 and BA.2. Among the three clinical outcomes, the protective probability against severe disease outcome was better, followed by symptomatic infection, and the protective probability against infection was poor. © 2023, Publication Centre of Anhui Medical University. All rights reserved.

10.
Microb Genom ; 9(4)2023 04.
Article in English | MEDLINE | ID: covidwho-2305020

ABSTRACT

The ARTIC protocol uses a multiplexed PCR approach with two primer pools tiling the entire SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) genome. Primer pool updates are necessary for accurate amplicon sequencing of evolving SARS-CoV-2 variants with novel mutations. The suitability of the ARTIC V4 and updated V4.1 primer scheme was assessed using whole genome sequencing of Omicron from clinical samples using Oxford Nanopore Technology. Analysis of Omicron BA.1 genomes revealed that 93.22 % of clinical samples generated improved genome coverage at 50× read depth with V4.1 primers when compared to V4 primers. Additionally, the V4.1 primers improved coverage of BA.1 across amplicons 76 and 88, which resulted in the detection of the variant-defining mutations G22898A, A26530G and C26577G. The Omicron BA.2 sub-variant (VUI-22JAN-01) replaced BA.1 as the dominant variant by March 2022, and analysis of 168 clinical samples showed reduced coverage across amplicons 15 and 75. Upon further interrogation of primer binding sites, a mutation at C4321T [present in 163/168 (97 %) of samples] was identified as a possible cause of complete dropout of amplicon 15. Furthermore, two mutations were identified within the primer binding regions for amplicon 75: A22786C (present in 90 % of samples) and C22792T (present in 12.5 % of samples). Together, these mutations may result in reduced coverage of amplicon 75, and further primer updates would allow the identification of the two BA.2-defining mutations present in amplicon 75: A22688G and T22679C. This work highlights the need for ongoing surveillance of primer matches as circulating variants evolve and change.


Subject(s)
COVID-19 , Humans , SARS-CoV-2/genetics , Mutation , Binding Sites
11.
Front Microbiol ; 14: 1148255, 2023.
Article in English | MEDLINE | ID: covidwho-2294815

ABSTRACT

The ongoing evolution of SARS-CoV-2 continues to raise new questions regarding the duration of immunity to reinfection with emerging variants. To address these knowledge gaps, controlled investigations in established animal models are needed to assess duration of immunity induced by each SARS-CoV-2 lineage and precisely evaluate the extent of cross-reactivity and cross-protection afforded. Using the Syrian hamster model, we specifically investigated duration of infection acquired immunity to SARS-CoV-2 ancestral Wuhan strain over 12 months. Plasma spike- and RBD-specific IgG titers against ancestral SARS-CoV-2 peaked at 4 months post-infection and showed a modest decline by 12 months. Similar kinetics were observed with plasma virus neutralizing antibody titers which peaked at 2 months post-infection and showed a modest decline by 12 months. Reinfection with ancestral SARS-CoV-2 at regular intervals demonstrated that prior infection provides long-lasting immunity as hamsters were protected against severe disease when rechallenged at 2, 4, 6, and 12 months after primary infection, and this coincided with the induction of high virus neutralizing antibody titers. Cross-neutralizing antibody titers against the B.1.617.2 variant (Delta) progressively waned in blood over 12 months, however, re-infection boosted these titers to levels equivalent to ancestral SARS-CoV-2. Conversely, cross-neutralizing antibodies to the BA.1 variant (Omicron) were virtually undetectable at all time-points after primary infection and were only detected following reinfection at 6 and 12 months. Collectively, these data demonstrate that infection with ancestral SARS-CoV-2 strains generates antibody responses that continue to evolve long after resolution of infection with distinct kinetics and emergence of cross-reactive and cross-neutralizing antibodies to Delta and Omicron variants and their specific spike antigens.

13.
Chinese Journal of Disease Control and Prevention ; 27(2):164-168, 2023.
Article in Chinese | EMBASE | ID: covidwho-2288861

ABSTRACT

Objective To estimate the protection probability against SARS-CoV-2 variant Omicron strains BA.1, BA.2 and BA.5 infection, symptomatic infection and severe disease outcomes in asymptomatic individuals infected with SARS-CoV-2 prototype strain previously. Methods Our previous study had shown that the dynamic change of neutralizing antibodies in asymptomatic individuals infected with the SARS-CoV-2 prototype strain. Based on our previous study, a peer-reviewed predictive model on the basis of logistic model was used to estimate the protection probability of asymptomatic individuals against Omicron strains BA.1, BA.2 and BA.5. We estimate the protection probability against infection, symptomatic infection and severe disease outcomes on 28, 51 and 261 days after confirmation. Results The protection probability against reinfection of Omicron variant strains BA.1, BA.2, and BA.5 on 28 days after confirmation were 30% (95% CI: 16%-52%) , 23% (95% CI: 15%-36%) and 8% (95% CI: 4%-16%) respectively, while decreased to 9% (95% CI: 3%-21%) , 6% (95% CI: 3%-12%) and 2% (95% CI: 1%-4%) on 261 days after confirmation. The protection probability against symptomatic infection of Omicron strains BA.1, BA.2, and BA.5 were 51% (95% CI: 28%-80%) , 42% (95% CI: 26%-67%) and 16% (95% CI: 7% - 40%) respectively on 28 days after confirmation, while decreased to 16% (95% CI: 7%-35%) , 12% (95% CI: 7% - 22%) and 3% (95% CI: 1% - 8%) on 261 days after confirmation. The protection probability against severe disease of Omicron strains BA.1, BA.2, and BA.5 were 91% (95% CI: 72%-98%) , 88% (95% CI: 70%-97%) and 66% (95% CI: 35%-90%) respectively on 28 days after confirmation, while decreased to 60% (95% CI: 35%-86%) , 51% (95% CI: 32%-75%) and 22% (95% CI: 10%-50%) on 261 days after confirmation. Conclusions Neutralizing antibodies induced in asymptomatic individuals infected with prototype strain could provide higher protection against Omicron strain BA.5 than Omicron strains BA.1 and BA.2. Among the three clinical outcomes, the protective probability against severe disease outcome was better, followed by symptomatic infection, and the protective probability against infection was poor.Copyright © 2023, Publication Centre of Anhui Medical University. All rights reserved.

14.
Viruses ; 15(3)2023 03 16.
Article in English | MEDLINE | ID: covidwho-2286270

ABSTRACT

T-cell immunity plays an important role in the control of SARS-CoV-2 and has a great cross-protective effect on the variants. The Omicron BA.1 variant contains more than 30 mutations in the spike and severely evades humoral immunity. To understand how Omicron BA.1 spike mutations affect cellular immunity, the T-cell epitopes of SARS-CoV-2 wild-type and Omicron BA.1 spike in BALB/c (H-2d) and C57BL/6 mice (H-2b) were mapped through IFNγ ELISpot and intracellular cytokine staining assays. The epitopes were identified and verified in splenocytes from mice vaccinated with the adenovirus type 5 vector encoding the homologous spike, and the positive peptides involved in spike mutations were tested against wide-type and Omicron BA.1 vaccines. A total of eleven T-cell epitopes of wild-type and Omicron BA.1 spike were identified in BALB/c mice, and nine were identified in C57BL/6 mice, only two of which were CD4+ T-cell epitopes and most of which were CD8+ T-cell epitopes. The A67V and Del 69-70 mutations in Omicron BA.1 spike abolished one epitope in wild-type spike, and the T478K, E484A, Q493R, G496S and H655Y mutations resulted in three new epitopes in Omicron BA.1 spike, while the Y505H mutation did not affect the epitope. These data describe the difference of T-cell epitopes in SARS-CoV-2 wild-type and Omicron BA.1 spike in H-2b and H-2d mice, providing a better understanding of the effects of Omicron BA.1 spike mutations on cellular immunity.


Subject(s)
COVID-19 , Epitopes, T-Lymphocyte , Animals , Mice , Mice, Inbred C57BL , Epitopes, T-Lymphocyte/genetics , SARS-CoV-2/genetics , Mutation , Mice, Inbred BALB C
15.
Viruses ; 15(3)2023 03 14.
Article in English | MEDLINE | ID: covidwho-2267327

ABSTRACT

Since the beginning of the pandemic, public health authorities have provided support to long-term care facilities (LTCFs) for the implementation of risk mitigation measures. Nevertheless, the necessity of these measures has been doubted, especially after vaccines and antiviral treatment became available. Here, we present the burden of COVID-19 infection in LTCFs during the first 9 months of 2022 across Greece. We tested the possible association of LTCF characteristics and public health response with the occurrence of clusters (two or more linked cases in LTCFs) with facilities recording one case as reference. After excluding LTCFs with sporadic cases, we tested the effect of the abovementioned variables on attack rate (cases/total number of persons in the LTCF). The disease burden in LTCFs was high and substantially varied among facilities, with hospitalization and case fatality rates ranging from 2 to 80% (median 14%, IQR 27%) and from 1 to 50% (median 5%, IQR 7%), respectively. The probability of transmission inside the facility increased when notification of public health authorities was delayed (p-Value < 0.001) after adjusting for vaccination status and phase of the pandemic. Results showed that active support from public health authorities is still important in reducing the burden in LTCFs.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Long-Term Care/methods , Public Health , Health Facilities , Antiviral Agents/therapeutic use
16.
Microbiol Spectr ; : e0513122, 2023 Mar 22.
Article in English | MEDLINE | ID: covidwho-2265827

ABSTRACT

In addition to the original monovalent vaccines available for SARS-CoV-2, bivalent vaccines covering wild-type (WT) and Omicron BA.1 are also available. However, there is a lack of real-world data on the immunogenicity of bivalent vaccines as second boosters against the dominant Omicron sublineages, including BA.2 and BA.5. Healthcare workers (n = 565) who received the first booster vaccination were followed for 2 weeks after the second booster dose of the monovalent mRNA-1273 (WT group, n = 168) and bivalent BNT162b2 (WT+BA.1 group, n = 23) vaccines. Participants with previous SARS-CoV-2 infections were excluded from the study. The anti-receptor binding domain (RBD) antibody levels after the second booster dose in the WT and WT+BA.1 group were similar (median [interquartile range], 26,262.0 [16,951.0 to 38,137.0] U/mL versus 24,840.0 [14,828.0 to 41,460.0] U/mL, respectively). Although the neutralization activities of the pooled sera were lower against BA.5 than against other variants in both groups, the activities against BA.2 and BA.5 in the WT+BA.1 group were higher than those of the WT group in both pseudotyped and live virus assays. Vaccine-related symptoms, including systemic and local symptoms, were strongly correlated with anti-RBD antibody levels and neutralizing titers. In conclusion, the second booster dose of the bivalent (WT/Omicron BA.1) vaccine induced higher neutralizing activity against BA.2 and BA.5 than that of the original monovalent vaccine. IMPORTANCE Although Omicron BA.1-containing bivalent vaccines have been authorized, real-world data validating their safety and antibody responses remain scarce. We conducted a prospective longitudinal study to assess the safety, immunogenicity, and reactogenicity of the second booster dose with the Omicron BA.1 bivalent vaccine in health care workers. Compared with the original monovalent vaccine, the bivalent (WT+BA.1) vaccine elicited higher levels of neutralizing antibodies against the Omicron BA.2 and BA.5 subvariants. The frequency of adverse events after the second booster dose was similar to that of the monovalent vaccine. BA.5-neutralizing antibodies induced by the bivalent Omicron BA.1-containing vaccine were expected to decline. A prospective longitudinal study should be performed to determine the persistence of the humoral immunity.

17.
Viruses ; 15(2)2023 01 22.
Article in English | MEDLINE | ID: covidwho-2284359

ABSTRACT

The COVID-19 pandemic has lately been driven by Omicron. This work aimed to study the dynamics of SARS-CoV-2 Omicron lineages during the third and fourth waves of COVID-19 in Argentina. Molecular surveillance was performed on 3431 samples from Argentina, between EW44/2021 and EW31/2022. Sequencing, phylogenetic and phylodynamic analyses were performed. A differential dynamic between the Omicron waves was found. The third wave was associated with lineage BA.1, characterized by a high number of cases, very fast displacement of Delta, doubling times of 3.3 days and a low level of lineage diversity and clustering. In contrast, the fourth wave was longer but associated with a lower number of cases, initially caused by BA.2, and later by BA.4/BA.5, with doubling times of about 10 days. Several BA.2 and BA.4/BA.5 sublineages and introductions were detected, although very few clusters with a constrained geographical distribution were observed, suggesting limited transmission chains. The differential dynamic could be due to waning immunity and an increase in population gatherings in the BA.1 wave, and a boosted population (for vaccination or recent prior immunity for BA.1 infection) in the wave caused by BA2/BA.4/BA.5, which may have limited the establishment of the new lineages.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Argentina/epidemiology , Pandemics , Phylogeny
18.
Expert Rev Vaccines ; 22(1): 288-298, 2023.
Article in English | MEDLINE | ID: covidwho-2270267

ABSTRACT

BACKGROUND: Evaluating COVID-19 vaccine effectiveness (VE) domestically is crucial for assessing and determining national vaccination policy. This study aimed to evaluate VE of mRNA COVID-19 vaccines in Japan. METHODS: We conducted a multicenter test-negative case-control study. The study comprised individuals aged ≥16 visiting medical facilities with COVID-19-related signs or symptoms from 1 January to 26 June 2022, when Omicron BA.1 and BA.2 were dominant nationwide. We evaluated VE of primary and booster vaccination against symptomatic SARS-CoV-2 infections and relative VE of booster compared with primary. RESULTS: We enrolled 7,931 episodes, including 3,055 test positive. The median age was 39, 48.0% were male, and 20.5% had underlying medical conditions. In individuals aged 16 to 64, VE of primary vaccination within 90 days was 35.6% (95% CI, 19.0-48.8%). After booster, VE increased to 68.7% (60.6-75.1%). In individuals aged ≥65, VE of primary and booster was 31.2% (-44.0-67.1%) and 76.5% (46.7-89.7%), respectively. Relative VE of booster compared with primary vaccination was 52.9% (41.0-62.5%) in individuals aged 16 to 64 and 65.9% (35.7-81.9%) in individuals aged ≥65. CONCLUSIONS: During BA.1 and BA.2 epidemic in Japan, mRNA COVID-19 primary vaccination provided modest protection. Booster vaccination was necessary to protect against symptomatic infections.


Subject(s)
COVID-19 , SARS-CoV-2 , Male , Humans , Female , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Japan/epidemiology , Case-Control Studies , Vaccine Efficacy , RNA, Messenger
19.
J Med Virol ; 95(3): e28686, 2023 03.
Article in English | MEDLINE | ID: covidwho-2252520

ABSTRACT

Recent findings in permanent cell lines suggested that SARS-CoV-2 Omicron BA.1 induces a stronger interferon response than Delta. Here, we show that BA.1 and BA.5 but not Delta induce an antiviral state in air-liquid interface cultures of primary human bronchial epithelial cells and primary human monocytes. Both Omicron subvariants caused the production of biologically active types I (α/ß) and III (λ) interferons and protected cells from super-infection with influenza A viruses. Notably, abortive Omicron infection of monocytes was sufficient to protect monocytes from influenza A virus infection. Interestingly, while influenza-like illnesses surged during the Delta wave in England, their spread rapidly declined upon the emergence of Omicron. Mechanistically, Omicron-induced interferon signaling was mediated via double-stranded RNA recognition by MDA5, as MDA5 knockout prevented it. The JAK/STAT inhibitor baricitinib inhibited the Omicron-mediated antiviral response, suggesting it is caused by MDA5-mediated interferon production, which activates interferon receptors that then trigger JAK/STAT signaling. In conclusion, our study (1) demonstrates that only Omicron but not Delta induces a substantial interferon response in physiologically relevant models, (2) shows that Omicron infection protects cells from influenza A virus super-infection, and (3) indicates that BA.1 and BA.5 induce comparable antiviral states.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza A Virus, H5N1 Subtype , Influenza A virus , Influenza, Human , Janus Kinase Inhibitors , Humans , SARS-CoV-2 , Interferons , Antiviral Agents
20.
BMC Infect Dis ; 23(1): 133, 2023 Mar 07.
Article in English | MEDLINE | ID: covidwho-2280337

ABSTRACT

BACKGROUND: Since its emergence in November 2021, SARS-CoV-2 Omicron clade has quickly become dominant, due to its increased transmissibility and immune evasion. Different sublineages are currently circulating, which differ in mutations and deletions in regions of the SARS-CoV-2 genome implicated in the immune response. In May 2022, BA.1 and BA.2 were the most prevalent sublineages in Europe, both characterized by ability of evading natural acquired and vaccine-induced immunity and of escaping monoclonal antibodies neutralization. CASE PRESENTATION: A 5-years old male affected by B-cell acute lymphoblastic leukemia in reinduction was tested positive for SARS-CoV-2 by RT-PCR at the Bambino Gesù Children Hospital in Rome in December 2021. He experienced a mild COVID-19 manifestation, and a peak of nasopharyngeal viral load corresponding to 15.5 Ct. Whole genome sequencing identified the clade 21 K (Omicron), sublineage BA.1.1. The patient was monitored over time and tested negative for SARS-CoV-2 after 30 days. Anti-S antibodies were detected positive with modest titre (3.86 BAU/mL), while anti-N antibodies were negative. 74 days after the onset of the first infection and 23 days after the last negative test, the patient was readmitted to hospital with fever, and tested positive for SARS-CoV-2 by RT-PCR (peak of viral load corresponding to 23.3 Ct). Again, he experienced a mild COVID-19. Whole genome sequencing revealed an infection with the Omicron lineage BA.2 (21L clade). Sotrovimab administration was started at the fifth day of positivity, and RT-PCR negativity occurred 10 days later. Surveillance SARS-CoV-2 RT-PCR were persistently negative, and in May 2022, anti-N antibodies were found positive and anti-S antibodies reached titres > 5000 BAU/mL. CONCLUSIONS: By this clinical case, we showed that SARS-CoV-2 reinfection within the Omicron clade can occur and can be correlated to inadequate immune responses to primary infection. We also showed that the infection's length was shorter in the second respect to first episode, suggesting that pre-existing T cell-mediated immunity, though not preventing re-infection, might have limited the SARS-CoV-2 replication capacity. Lastly, Sotrovimab treatment retained activity against BA.2, probably accelerating the viral clearance in the second infectious episode, after which seroconversion and increase of anti-S antibodies titres were observed.


Subject(s)
COVID-19 , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Reinfection , Child, Preschool , Humans , Male , Antibodies, Monoclonal , COVID-19/complications , COVID-19/diagnosis , Hospitals, Pediatric , Precursor Cell Lymphoblastic Leukemia-Lymphoma/complications , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL